Cargando…
High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning
BACKGROUND: Effective soybean seed phenotyping demands large-scale accurate quantities of morphological parameters. The traditional manual acquisition of soybean seed morphological phenotype information is error-prone, and time-consuming, which is not feasible for large-scale collection. The segment...
Autores principales: | Yang, Si, Zheng, Lihua, He, Peng, Wu, Tingting, Sun, Shi, Wang, Minjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097802/ https://www.ncbi.nlm.nih.gov/pubmed/33952294 http://dx.doi.org/10.1186/s13007-021-00749-y |
Ejemplares similares
-
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2021) -
Phenotype Prediction and Genome-Wide Association Study Using Deep Convolutional Neural Network of Soybean
por: Liu, Yang, et al.
Publicado: (2019) -
Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review
por: Jiang, Yu, et al.
Publicado: (2020) -
Fast Identification of Soybean Seed Varieties Using Laser-Induced Breakdown Spectroscopy Combined With Convolutional Neural Network
por: Li, Xiaolong, et al.
Publicado: (2021) -
High Throughput Phenotyping for Various Traits on Soybean Seeds Using Image Analysis
por: BAEK, JeongHo, et al.
Publicado: (2020)