Cargando…
Unpaired data empowers association tests
MOTIVATION: There is growing interest in the biomedical research community to incorporate retrospective data, available in healthcare systems, to shed light on associations between different biomarkers. Understanding the association between various types of biomedical data, such as genetic, blood bi...
Autores principales: | Gong, Mingming, Liu, Peng, Sciurba, Frank C, Stojanov, Petar, Tao, Dacheng, Tseng, George C, Zhang, Kun, Batmanghelich, Kayhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098021/ https://www.ncbi.nlm.nih.gov/pubmed/33070196 http://dx.doi.org/10.1093/bioinformatics/btaa886 |
Ejemplares similares
-
Improving clinical disease subtyping and future events prediction through a chest CT‐based deep learning approach
por: Singla, Sumedha, et al.
Publicado: (2021) -
3D-BoxSup: Positive-Unlabeled Learning of Brain Tumor Segmentation Networks From 3D Bounding Boxes
por: Xu, Yanwu, et al.
Publicado: (2020) -
Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis
por: Sun, Li, et al.
Publicado: (2022) -
Deep CT to MR Synthesis Using Paired and Unpaired Data
por: Jin, Cheng-Bin, et al.
Publicado: (2019) -
Suppressors of Meiotic Silencing by Unpaired DNA
por: Xiao, Hua, et al.
Publicado: (2019)