Cargando…
MolTrans: Molecular Interaction Transformer for drug–target interaction prediction
MOTIVATION: Drug–target interaction (DTI) prediction is a foundational task for in-silico drug discovery, which is costly and time-consuming due to the need of experimental search over large drug compound space. Recent years have witnessed promising progress for deep learning in DTI predictions. How...
Autores principales: | Huang, Kexin, Xiao, Cao, Glass, Lucas M, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098026/ https://www.ncbi.nlm.nih.gov/pubmed/33070179 http://dx.doi.org/10.1093/bioinformatics/btaa880 |
Ejemplares similares
-
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
SkipGNN: predicting molecular interactions with skip-graph networks
por: Huang, Kexin, et al.
Publicado: (2020) -
SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization
por: Yu, Yue, et al.
Publicado: (2021) -
HINT: Hierarchical interaction network for clinical-trial-outcome predictions
por: Fu, Tianfan, et al.
Publicado: (2022) -
Multi-TransDTI: Transformer for Drug–Target Interaction Prediction Based on Simple Universal Dictionaries with Multi-View Strategy
por: Wang, Gan, et al.
Publicado: (2022)