Cargando…
COVID-19 prevalence forecasting using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN): Case of Turkey
A local outbreak of unknown pneumonia was detected in Wuhan (Hubei, China) in December 2019. It is determined to be caused by a severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) and called COVID-19 by scientists. The outbreak has since spread all over the world with a total of 120,815,512...
Autores principales: | Toğa, Gülhan, Atalay, Berrin, Toksari, M. Duran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098037/ https://www.ncbi.nlm.nih.gov/pubmed/34118730 http://dx.doi.org/10.1016/j.jiph.2021.04.015 |
Ejemplares similares
-
Forecasting COVID-19 Cases Using Alpha-Sutte Indicator: A Comparison with Autoregressive Integrated Moving Average (ARIMA) Method
por: Attanayake, A. M. C. H., et al.
Publicado: (2020) -
Forecasting New Tuberculosis Cases in Malaysia: A Time-Series Study Using the Autoregressive Integrated Moving Average (ARIMA) Model
por: Ab Rashid, Mohd Ariff, et al.
Publicado: (2023) -
Forecasting blood demand for different blood groups in Shiraz using auto regressive integrated moving average (ARIMA) and artificial neural network (ANN) and a hybrid approaches
por: Sarvestani, Seddigheh Edalat, et al.
Publicado: (2022) -
Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends
por: ArunKumar, K.E., et al.
Publicado: (2022) -
Forecasting annual incidence and mortality rate for prostate cancer in Australia until 2022 using autoregressive integrated moving average (ARIMA) models
por: Earnest, Arul, et al.
Publicado: (2019)