Cargando…
Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury
Psychosis is a rare, but particularly serious sequela of traumatic brain injury. However, little is known as to the neurobiological processes that may contribute to its onset. Early evidence suggests that psychotic symptom development after traumatic brain injury may co-occur with hippocampal degene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098106/ https://www.ncbi.nlm.nih.gov/pubmed/33977261 http://dx.doi.org/10.1093/braincomms/fcab026 |
_version_ | 1783688438019522560 |
---|---|
author | Bray, Michael J C Sharma, Bhanu Cottrelle's, Julia Peters, Matthew E Bayley, Mark Green, Robin E A |
author_facet | Bray, Michael J C Sharma, Bhanu Cottrelle's, Julia Peters, Matthew E Bayley, Mark Green, Robin E A |
author_sort | Bray, Michael J C |
collection | PubMed |
description | Psychosis is a rare, but particularly serious sequela of traumatic brain injury. However, little is known as to the neurobiological processes that may contribute to its onset. Early evidence suggests that psychotic symptom development after traumatic brain injury may co-occur with hippocampal degeneration, invoking the possibility of a relationship. Particularly regarding the hippocampal head, these degenerative changes may lead to dysregulation in dopaminergic circuits, as is reported in psychoses due to schizophrenia, resulting in the positive symptom profile typically seen in post-injury psychosis. The objective of this study was to examine change in hippocampal volume and psychotic symptoms across time in a sample of moderate-to-severe traumatic brain injury patients. We hypothesized that hippocampal volume loss would be associated with increased psychotic symptom severity. From a database of n = 137 adult patients with prospectively collected, longitudinal imaging and neuropsychiatric outcomes, n = 24 had complete data at time points of interest (5 and 12 months post-traumatic brain injury) and showed increasing psychotic symptom severity on the Personality Assessment Inventory psychotic experiences subscale of the schizophrenia clinical scale across time. Secondary analysis employing stepwise regression with hippocampal volume change (independent variable) and Personality Assessment Inventory psychotic symptom change (dependent variable) from 5 to 12 months post-injury was conducted including age, sex, marijuana use, family history of schizophrenia, years of education and injury severity as control variables. Total right hippocampal volume loss predicted an increase in the Personality Assessment Inventory psychotic experiences subscale (F((1, 22)) = 5.396, adjusted R(2) = 0.161, P = 0.030; β = −0.017, 95% confidence interval = −0.018, −0.016) as did volume of the right hippocampal head (F((1, 22)) = 5.764, adjusted R(2) = 0.172, P = 0.025; β = −0.019, 95% confidence interval = −0.021, −0.017). Final model goodness-of-fit was confirmed using k-fold (k = 5) cross-validation. Consistent with our hypotheses, the current findings suggest that hippocampal degeneration in the chronic stages of moderate-to-severe traumatic brain injury may play a role in the delayed onset of psychotic symptoms after traumatic brain injury. These findings localized to the right hippocampal head are supportive of a proposed aetiological mechanism whereby atrophy of the hippocampal head may lead to the dysregulation of dopaminergic networks following traumatic brain injury; possibly accounting for observed clinical features of psychotic disorder after traumatic brain injury (including prolonged latency period to symptom onset and predominance of positive symptoms). If further validated, these findings may bear important clinical implications for neurorehabilitative therapies following traumatic brain injury. |
format | Online Article Text |
id | pubmed-8098106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80981062021-05-10 Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury Bray, Michael J C Sharma, Bhanu Cottrelle's, Julia Peters, Matthew E Bayley, Mark Green, Robin E A Brain Commun Original Article Psychosis is a rare, but particularly serious sequela of traumatic brain injury. However, little is known as to the neurobiological processes that may contribute to its onset. Early evidence suggests that psychotic symptom development after traumatic brain injury may co-occur with hippocampal degeneration, invoking the possibility of a relationship. Particularly regarding the hippocampal head, these degenerative changes may lead to dysregulation in dopaminergic circuits, as is reported in psychoses due to schizophrenia, resulting in the positive symptom profile typically seen in post-injury psychosis. The objective of this study was to examine change in hippocampal volume and psychotic symptoms across time in a sample of moderate-to-severe traumatic brain injury patients. We hypothesized that hippocampal volume loss would be associated with increased psychotic symptom severity. From a database of n = 137 adult patients with prospectively collected, longitudinal imaging and neuropsychiatric outcomes, n = 24 had complete data at time points of interest (5 and 12 months post-traumatic brain injury) and showed increasing psychotic symptom severity on the Personality Assessment Inventory psychotic experiences subscale of the schizophrenia clinical scale across time. Secondary analysis employing stepwise regression with hippocampal volume change (independent variable) and Personality Assessment Inventory psychotic symptom change (dependent variable) from 5 to 12 months post-injury was conducted including age, sex, marijuana use, family history of schizophrenia, years of education and injury severity as control variables. Total right hippocampal volume loss predicted an increase in the Personality Assessment Inventory psychotic experiences subscale (F((1, 22)) = 5.396, adjusted R(2) = 0.161, P = 0.030; β = −0.017, 95% confidence interval = −0.018, −0.016) as did volume of the right hippocampal head (F((1, 22)) = 5.764, adjusted R(2) = 0.172, P = 0.025; β = −0.019, 95% confidence interval = −0.021, −0.017). Final model goodness-of-fit was confirmed using k-fold (k = 5) cross-validation. Consistent with our hypotheses, the current findings suggest that hippocampal degeneration in the chronic stages of moderate-to-severe traumatic brain injury may play a role in the delayed onset of psychotic symptoms after traumatic brain injury. These findings localized to the right hippocampal head are supportive of a proposed aetiological mechanism whereby atrophy of the hippocampal head may lead to the dysregulation of dopaminergic networks following traumatic brain injury; possibly accounting for observed clinical features of psychotic disorder after traumatic brain injury (including prolonged latency period to symptom onset and predominance of positive symptoms). If further validated, these findings may bear important clinical implications for neurorehabilitative therapies following traumatic brain injury. Oxford University Press 2021-03-09 /pmc/articles/PMC8098106/ /pubmed/33977261 http://dx.doi.org/10.1093/braincomms/fcab026 Text en © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Bray, Michael J C Sharma, Bhanu Cottrelle's, Julia Peters, Matthew E Bayley, Mark Green, Robin E A Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title | Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title_full | Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title_fullStr | Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title_full_unstemmed | Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title_short | Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
title_sort | hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098106/ https://www.ncbi.nlm.nih.gov/pubmed/33977261 http://dx.doi.org/10.1093/braincomms/fcab026 |
work_keys_str_mv | AT braymichaeljc hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury AT sharmabhanu hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury AT cottrellesjulia hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury AT petersmatthewe hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury AT bayleymark hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury AT greenrobinea hippocampalatrophyisassociatedwithpsychoticsymptomseverityfollowingtraumaticbraininjury |