Cargando…

Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites

The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger p...

Descripción completa

Detalles Bibliográficos
Autores principales: Protesescu, Loredana, Calbo, Joaquín, Williams, Kristopher, Tisdale, William, Walsh, Aron, Dincă, Mircea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098656/
https://www.ncbi.nlm.nih.gov/pubmed/33996009
http://dx.doi.org/10.1039/d1sc00282a
_version_ 1783688452825415680
author Protesescu, Loredana
Calbo, Joaquín
Williams, Kristopher
Tisdale, William
Walsh, Aron
Dincă, Mircea
author_facet Protesescu, Loredana
Calbo, Joaquín
Williams, Kristopher
Tisdale, William
Walsh, Aron
Dincă, Mircea
author_sort Protesescu, Loredana
collection PubMed
description The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr(3)O(OH)(H(2)O)(2)(terephthalate)(3) (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr(3), MAPbBr(3) (MA(+) = methylammonium), and (FA)PbBr(3) (FA(+) = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr(3) (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.
format Online
Article
Text
id pubmed-8098656
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-80986562021-05-13 Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites Protesescu, Loredana Calbo, Joaquín Williams, Kristopher Tisdale, William Walsh, Aron Dincă, Mircea Chem Sci Chemistry The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr(3)O(OH)(H(2)O)(2)(terephthalate)(3) (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr(3), MAPbBr(3) (MA(+) = methylammonium), and (FA)PbBr(3) (FA(+) = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr(3) (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls. The Royal Society of Chemistry 2021-03-19 /pmc/articles/PMC8098656/ /pubmed/33996009 http://dx.doi.org/10.1039/d1sc00282a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Protesescu, Loredana
Calbo, Joaquín
Williams, Kristopher
Tisdale, William
Walsh, Aron
Dincă, Mircea
Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title_full Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title_fullStr Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title_full_unstemmed Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title_short Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
title_sort colloidal nano-mofs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098656/
https://www.ncbi.nlm.nih.gov/pubmed/33996009
http://dx.doi.org/10.1039/d1sc00282a
work_keys_str_mv AT protesesculoredana colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites
AT calbojoaquin colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites
AT williamskristopher colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites
AT tisdalewilliam colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites
AT walsharon colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites
AT dincamircea colloidalnanomofsnucleateandstabilizeultrasmallquantumdotsofleadbromideperovskites