Cargando…

Membrane binding controls ordered self-assembly of animal septins

Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with...

Descripción completa

Detalles Bibliográficos
Autores principales: Szuba, Agata, Bano, Fouzia, Castro-Linares, Gerard, Iv, Francois, Mavrakis, Manos, Richter, Ralf P, Bertin, Aurélie, Koenderink, Gijsje H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099429/
https://www.ncbi.nlm.nih.gov/pubmed/33847563
http://dx.doi.org/10.7554/eLife.63349
_version_ 1783688572180627456
author Szuba, Agata
Bano, Fouzia
Castro-Linares, Gerard
Iv, Francois
Mavrakis, Manos
Richter, Ralf P
Bertin, Aurélie
Koenderink, Gijsje H
author_facet Szuba, Agata
Bano, Fouzia
Castro-Linares, Gerard
Iv, Francois
Mavrakis, Manos
Richter, Ralf P
Bertin, Aurélie
Koenderink, Gijsje H
author_sort Szuba, Agata
collection PubMed
description Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
format Online
Article
Text
id pubmed-8099429
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-80994292021-05-06 Membrane binding controls ordered self-assembly of animal septins Szuba, Agata Bano, Fouzia Castro-Linares, Gerard Iv, Francois Mavrakis, Manos Richter, Ralf P Bertin, Aurélie Koenderink, Gijsje H eLife Cell Biology Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics. eLife Sciences Publications, Ltd 2021-04-13 /pmc/articles/PMC8099429/ /pubmed/33847563 http://dx.doi.org/10.7554/eLife.63349 Text en © 2021, Szuba et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Szuba, Agata
Bano, Fouzia
Castro-Linares, Gerard
Iv, Francois
Mavrakis, Manos
Richter, Ralf P
Bertin, Aurélie
Koenderink, Gijsje H
Membrane binding controls ordered self-assembly of animal septins
title Membrane binding controls ordered self-assembly of animal septins
title_full Membrane binding controls ordered self-assembly of animal septins
title_fullStr Membrane binding controls ordered self-assembly of animal septins
title_full_unstemmed Membrane binding controls ordered self-assembly of animal septins
title_short Membrane binding controls ordered self-assembly of animal septins
title_sort membrane binding controls ordered self-assembly of animal septins
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099429/
https://www.ncbi.nlm.nih.gov/pubmed/33847563
http://dx.doi.org/10.7554/eLife.63349
work_keys_str_mv AT szubaagata membranebindingcontrolsorderedselfassemblyofanimalseptins
AT banofouzia membranebindingcontrolsorderedselfassemblyofanimalseptins
AT castrolinaresgerard membranebindingcontrolsorderedselfassemblyofanimalseptins
AT ivfrancois membranebindingcontrolsorderedselfassemblyofanimalseptins
AT mavrakismanos membranebindingcontrolsorderedselfassemblyofanimalseptins
AT richterralfp membranebindingcontrolsorderedselfassemblyofanimalseptins
AT bertinaurelie membranebindingcontrolsorderedselfassemblyofanimalseptins
AT koenderinkgijsjeh membranebindingcontrolsorderedselfassemblyofanimalseptins