Cargando…

Deep learning predicts chromosomal instability from histopathology images

Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-base...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhuoran, Verma, Akanksha, Naveed, Uska, Bakhoum, Samuel F., Khosravi, Pegah, Elemento, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099498/
https://www.ncbi.nlm.nih.gov/pubmed/33997679
http://dx.doi.org/10.1016/j.isci.2021.102394
_version_ 1783688581806555136
author Xu, Zhuoran
Verma, Akanksha
Naveed, Uska
Bakhoum, Samuel F.
Khosravi, Pegah
Elemento, Olivier
author_facet Xu, Zhuoran
Verma, Akanksha
Naveed, Uska
Bakhoum, Samuel F.
Khosravi, Pegah
Elemento, Olivier
author_sort Xu, Zhuoran
collection PubMed
description Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions of CIN status suggested intra-tumor heterogeneity within slides. Moreover, presence of patches with high predicted CIN score within an entire slide was more predictive of clinical outcome than the average CIN score of the slide, thus underscoring the clinical importance of intra-tumor heterogeneity.
format Online
Article
Text
id pubmed-8099498
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80994982021-05-13 Deep learning predicts chromosomal instability from histopathology images Xu, Zhuoran Verma, Akanksha Naveed, Uska Bakhoum, Samuel F. Khosravi, Pegah Elemento, Olivier iScience Article Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions of CIN status suggested intra-tumor heterogeneity within slides. Moreover, presence of patches with high predicted CIN score within an entire slide was more predictive of clinical outcome than the average CIN score of the slide, thus underscoring the clinical importance of intra-tumor heterogeneity. Elsevier 2021-04-03 /pmc/articles/PMC8099498/ /pubmed/33997679 http://dx.doi.org/10.1016/j.isci.2021.102394 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xu, Zhuoran
Verma, Akanksha
Naveed, Uska
Bakhoum, Samuel F.
Khosravi, Pegah
Elemento, Olivier
Deep learning predicts chromosomal instability from histopathology images
title Deep learning predicts chromosomal instability from histopathology images
title_full Deep learning predicts chromosomal instability from histopathology images
title_fullStr Deep learning predicts chromosomal instability from histopathology images
title_full_unstemmed Deep learning predicts chromosomal instability from histopathology images
title_short Deep learning predicts chromosomal instability from histopathology images
title_sort deep learning predicts chromosomal instability from histopathology images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099498/
https://www.ncbi.nlm.nih.gov/pubmed/33997679
http://dx.doi.org/10.1016/j.isci.2021.102394
work_keys_str_mv AT xuzhuoran deeplearningpredictschromosomalinstabilityfromhistopathologyimages
AT vermaakanksha deeplearningpredictschromosomalinstabilityfromhistopathologyimages
AT naveeduska deeplearningpredictschromosomalinstabilityfromhistopathologyimages
AT bakhoumsamuelf deeplearningpredictschromosomalinstabilityfromhistopathologyimages
AT khosravipegah deeplearningpredictschromosomalinstabilityfromhistopathologyimages
AT elementoolivier deeplearningpredictschromosomalinstabilityfromhistopathologyimages