Cargando…
Deep learning predicts chromosomal instability from histopathology images
Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-base...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099498/ https://www.ncbi.nlm.nih.gov/pubmed/33997679 http://dx.doi.org/10.1016/j.isci.2021.102394 |
_version_ | 1783688581806555136 |
---|---|
author | Xu, Zhuoran Verma, Akanksha Naveed, Uska Bakhoum, Samuel F. Khosravi, Pegah Elemento, Olivier |
author_facet | Xu, Zhuoran Verma, Akanksha Naveed, Uska Bakhoum, Samuel F. Khosravi, Pegah Elemento, Olivier |
author_sort | Xu, Zhuoran |
collection | PubMed |
description | Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions of CIN status suggested intra-tumor heterogeneity within slides. Moreover, presence of patches with high predicted CIN score within an entire slide was more predictive of clinical outcome than the average CIN score of the slide, thus underscoring the clinical importance of intra-tumor heterogeneity. |
format | Online Article Text |
id | pubmed-8099498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80994982021-05-13 Deep learning predicts chromosomal instability from histopathology images Xu, Zhuoran Verma, Akanksha Naveed, Uska Bakhoum, Samuel F. Khosravi, Pegah Elemento, Olivier iScience Article Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions of CIN status suggested intra-tumor heterogeneity within slides. Moreover, presence of patches with high predicted CIN score within an entire slide was more predictive of clinical outcome than the average CIN score of the slide, thus underscoring the clinical importance of intra-tumor heterogeneity. Elsevier 2021-04-03 /pmc/articles/PMC8099498/ /pubmed/33997679 http://dx.doi.org/10.1016/j.isci.2021.102394 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Zhuoran Verma, Akanksha Naveed, Uska Bakhoum, Samuel F. Khosravi, Pegah Elemento, Olivier Deep learning predicts chromosomal instability from histopathology images |
title | Deep learning predicts chromosomal instability from histopathology images |
title_full | Deep learning predicts chromosomal instability from histopathology images |
title_fullStr | Deep learning predicts chromosomal instability from histopathology images |
title_full_unstemmed | Deep learning predicts chromosomal instability from histopathology images |
title_short | Deep learning predicts chromosomal instability from histopathology images |
title_sort | deep learning predicts chromosomal instability from histopathology images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099498/ https://www.ncbi.nlm.nih.gov/pubmed/33997679 http://dx.doi.org/10.1016/j.isci.2021.102394 |
work_keys_str_mv | AT xuzhuoran deeplearningpredictschromosomalinstabilityfromhistopathologyimages AT vermaakanksha deeplearningpredictschromosomalinstabilityfromhistopathologyimages AT naveeduska deeplearningpredictschromosomalinstabilityfromhistopathologyimages AT bakhoumsamuelf deeplearningpredictschromosomalinstabilityfromhistopathologyimages AT khosravipegah deeplearningpredictschromosomalinstabilityfromhistopathologyimages AT elementoolivier deeplearningpredictschromosomalinstabilityfromhistopathologyimages |