Cargando…
Deep learning predicts chromosomal instability from histopathology images
Chromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-base...
Autores principales: | Xu, Zhuoran, Verma, Akanksha, Naveed, Uska, Bakhoum, Samuel F., Khosravi, Pegah, Elemento, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099498/ https://www.ncbi.nlm.nih.gov/pubmed/33997679 http://dx.doi.org/10.1016/j.isci.2021.102394 |
Ejemplares similares
-
Chromosomal Instability, Aneuploidy, and Cancer
por: Bakhoum, Samuel F., et al.
Publicado: (2014) -
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
por: Khosravi, Pegah, et al.
Publicado: (2017) -
A Markov chain for numerical chromosomal instability in clonally expanding populations
por: Elizalde, Sergi, et al.
Publicado: (2018) -
A CINful way to overcome addiction: how chromosomal instability enables cancer to overcome its oncogene addiction
por: Bronder, Daniel, et al.
Publicado: (2020) -
Histopathology-Based Deep-Learning Predicts Atherosclerotic Lesions in Intravascular Imaging
por: Holmberg, Olle, et al.
Publicado: (2021)