Cargando…
Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images
The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesize...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099524/ https://www.ncbi.nlm.nih.gov/pubmed/34007428 http://dx.doi.org/10.1155/2021/6678031 |
_version_ | 1783688588032999424 |
---|---|
author | Dong, Jiale Liu, Caiwei Man, Panpan Zhao, Guohua Wu, Yaping Lin, Yusong |
author_facet | Dong, Jiale Liu, Caiwei Man, Panpan Zhao, Guohua Wu, Yaping Lin, Yusong |
author_sort | Dong, Jiale |
collection | PubMed |
description | The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image synthesis. In this paper, the fusion-ROI patch GAN (Fp(roi)-GAN) model was constructed by incorporating a priori regional feature based on the two-stage cycle consistency mechanism of cycleGAN. This model has improved the tissue contrast of ROI and achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. The quantitative evaluation results in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of 0.981 ± 0.11 and a Hausdorff distance of 4.21 ± 2.84 relative to the original images. The classification experimental results show that the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance of prediction models, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGAN method. Hence, the paired medical images synthesized using Fp(roi)-GAN have high quality and structural consistency with real medical images. |
format | Online Article Text |
id | pubmed-8099524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-80995242021-05-17 Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images Dong, Jiale Liu, Caiwei Man, Panpan Zhao, Guohua Wu, Yaping Lin, Yusong J Healthc Eng Research Article The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image synthesis. In this paper, the fusion-ROI patch GAN (Fp(roi)-GAN) model was constructed by incorporating a priori regional feature based on the two-stage cycle consistency mechanism of cycleGAN. This model has improved the tissue contrast of ROI and achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. The quantitative evaluation results in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of 0.981 ± 0.11 and a Hausdorff distance of 4.21 ± 2.84 relative to the original images. The classification experimental results show that the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance of prediction models, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGAN method. Hence, the paired medical images synthesized using Fp(roi)-GAN have high quality and structural consistency with real medical images. Hindawi 2021-04-26 /pmc/articles/PMC8099524/ /pubmed/34007428 http://dx.doi.org/10.1155/2021/6678031 Text en Copyright © 2021 Jiale Dong et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dong, Jiale Liu, Caiwei Man, Panpan Zhao, Guohua Wu, Yaping Lin, Yusong Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title | Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title_full | Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title_fullStr | Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title_full_unstemmed | Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title_short | Fp(roi)-GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images |
title_sort | fp(roi)-gan with fused regional features for the synthesis of high-quality paired medical images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099524/ https://www.ncbi.nlm.nih.gov/pubmed/34007428 http://dx.doi.org/10.1155/2021/6678031 |
work_keys_str_mv | AT dongjiale fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages AT liucaiwei fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages AT manpanpan fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages AT zhaoguohua fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages AT wuyaping fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages AT linyusong fproiganwithfusedregionalfeaturesforthesynthesisofhighqualitypairedmedicalimages |