Cargando…

Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly

We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedchenko, Vadim, Boudko, Sergei P., Barber, Mary, Mikhailova, Tatiana, Saus, Juan, Harmange, Jean-Christophe, Hudson, Billy G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099640/
https://www.ncbi.nlm.nih.gov/pubmed/33775696
http://dx.doi.org/10.1016/j.jbc.2021.100592
_version_ 1783688612665098240
author Pedchenko, Vadim
Boudko, Sergei P.
Barber, Mary
Mikhailova, Tatiana
Saus, Juan
Harmange, Jean-Christophe
Hudson, Billy G.
author_facet Pedchenko, Vadim
Boudko, Sergei P.
Barber, Mary
Mikhailova, Tatiana
Saus, Juan
Harmange, Jean-Christophe
Hudson, Billy G.
author_sort Pedchenko, Vadim
collection PubMed
description We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion–dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient–signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention.
format Online
Article
Text
id pubmed-8099640
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-80996402021-05-13 Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly Pedchenko, Vadim Boudko, Sergei P. Barber, Mary Mikhailova, Tatiana Saus, Juan Harmange, Jean-Christophe Hudson, Billy G. J Biol Chem Research Article We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion–dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient–signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention. American Society for Biochemistry and Molecular Biology 2021-03-26 /pmc/articles/PMC8099640/ /pubmed/33775696 http://dx.doi.org/10.1016/j.jbc.2021.100592 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Pedchenko, Vadim
Boudko, Sergei P.
Barber, Mary
Mikhailova, Tatiana
Saus, Juan
Harmange, Jean-Christophe
Hudson, Billy G.
Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title_full Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title_fullStr Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title_full_unstemmed Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title_short Collagen IV(α345) dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly
title_sort collagen iv(α345) dysfunction in glomerular basement membrane diseases. iii. a functional framework for α345 hexamer assembly
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099640/
https://www.ncbi.nlm.nih.gov/pubmed/33775696
http://dx.doi.org/10.1016/j.jbc.2021.100592
work_keys_str_mv AT pedchenkovadim collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT boudkosergeip collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT barbermary collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT mikhailovatatiana collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT sausjuan collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT harmangejeanchristophe collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly
AT hudsonbillyg collageniva345dysfunctioninglomerularbasementmembranediseasesiiiafunctionalframeworkfora345hexamerassembly