Cargando…
Fluorescence microscopy datasets for training deep neural networks
BACKGROUND: Fluorescence microscopy is an important technique in many areas of biological research. Two factors that limit the usefulness and performance of fluorescence microscopy are photobleaching of fluorescent probes during imaging and, when imaging live cells, phototoxicity caused by light exp...
Autores principales: | Hagen, Guy M, Bendesky, Justin, Machado, Rosa, Nguyen, Tram-Anh, Kumar, Tanmay, Ventura, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099770/ https://www.ncbi.nlm.nih.gov/pubmed/33954794 http://dx.doi.org/10.1093/gigascience/giab032 |
Ejemplares similares
-
Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
por: Pospíšil, Jakub, et al.
Publicado: (2018) -
Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors
por: Lukeš, Tomáš, et al.
Publicado: (2018) -
Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction
por: Johnson, Karl A, et al.
Publicado: (2020) -
Imaging Membrane Curvature inside a FcεRI-Centric Synapse in RBL-2H3 Cells Using TIRF Microscopy with Polarized Excitation
por: Machado, Rosa, et al.
Publicado: (2019) -
Compound dataset and custom code for deep generative multi-target compound design
por: Blaschke, Thomas, et al.
Publicado: (2021)