Cargando…

Following de novo triglyceride dynamics in ovaries of Aedes aegypti during the previtellogenic stage

Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labe...

Descripción completa

Detalles Bibliográficos
Autores principales: Tose, Lilian Valadares, Weisbrod, Chad R., Michalkova, Veronika, Nouzova, Marcela, Noriega, Fernando G., Fernandez-Lima, Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099868/
https://www.ncbi.nlm.nih.gov/pubmed/33953286
http://dx.doi.org/10.1038/s41598-021-89025-6
Descripción
Sumario:Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labeling of follicle lipids with deuterated water ((2)H(2)O) can provide unequivocal identification of de novo lipid species during ovarian development. In the present study, we followed de novo triglyceride (TG) dynamics during the ovarian previtellogenic (PVG) stage (2–7 days post-eclosion) of female adult Aedes aegypti. The incorporation of stable isotopes from the diet was evaluated using liquid chromatography (LC) in tandem with the high accuracy (< 0.3 ppm) and high mass resolution (over 1 M) of a 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (14.5 T FT-ICR MS) equipped with hexapolar detection. LC-UHRMS provides effective lipid class separation and chemical formula identification based on the isotopic fine structure. The monitoring of stable isotope incorporation into de novo incorporated TGs suggests that ovarian lipids are consumed or recycled during the PVG stage, with variable time dynamics. These results provide further evidence of the complexity of the molecular mechanism of follicular lipid dynamics during oogenesis in mosquitoes.