Cargando…
Deep convolution stack for waveform in underwater acoustic target recognition
In underwater acoustic target recognition, deep learning methods have been proved to be effective on recognizing original signal waveform. Previous methods often utilize large convolutional kernels to extract features at the beginning of neural networks. It leads to a lack of depth and structural im...
Autores principales: | Tian, Shengzhao, Chen, Duanbing, Wang, Hang, Liu, Jingfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099869/ https://www.ncbi.nlm.nih.gov/pubmed/33953232 http://dx.doi.org/10.1038/s41598-021-88799-z |
Ejemplares similares
-
Few-shot learning for joint model in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2023) -
A Deep Convolutional Neural Network Inspired by Auditory Perception for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2019) -
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021) -
Feature augmentation based on information fusion rectification for few-shot image classification
por: Wang, Hang, et al.
Publicado: (2023) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018)