Cargando…

Twin-lattice atom interferometry

Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein c...

Descripción completa

Detalles Bibliográficos
Autores principales: Gebbe, Martina, Siemß, Jan-Niclas, Gersemann, Matthias, Müntinga, Hauke, Herrmann, Sven, Lämmerzahl, Claus, Ahlers, Holger, Gaaloul, Naceur, Schubert, Christian, Hammerer, Klemens, Abend, Sven, Rasel, Ernst M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100166/
https://www.ncbi.nlm.nih.gov/pubmed/33953188
http://dx.doi.org/10.1038/s41467-021-22823-8
Descripción
Sumario:Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.