Cargando…
A network analysis of crab metamorphosis and the hypothesis of development as a process of unfolding of an intensive complexity
Development has intrigued humanity since ancient times. Today, the main paradigm in developmental biology and evolutionary developmental biology (evo-devo) is the genetic program, in which development is explained by the interplay and interaction of genes, that is, by the action of gene regulatory n...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100167/ https://www.ncbi.nlm.nih.gov/pubmed/33953251 http://dx.doi.org/10.1038/s41598-021-88662-1 |
Sumario: | Development has intrigued humanity since ancient times. Today, the main paradigm in developmental biology and evolutionary developmental biology (evo-devo) is the genetic program, in which development is explained by the interplay and interaction of genes, that is, by the action of gene regulatory networks (GRNs). However, it is not even clear that a GRN, no matter how complex, can be translated into a form. Therefore, the fundamental enigma of development still remains: how is a complex organism formed from a single cell? This question unfolded the historical drama and the dialectical tension between preformation and epigenesis. In order to shed light on these issues, I studied the development of crabs (infraorder Brachyura), as representative of the subphylum Crustacea, using network theory. The external morphology of the different phases of brachyuran metamorphosis were modeled as networks and their main characteristics analyzed. As one could expect, the parameters usually regarded as indicative of network complexity, such as modularity and hierarchy, increased during development. However, when more sophisticated complexity measures were tested, it was evidenced that whereas a group of complexity measures increased during development, another group decreased. This led to consider that two kinds of complexities were being measured. I called them intensive and extensive complexity. In view of these results, I propose that crab development involves a passage from an intensive to an extensive complexity. In other words, crab development can be interpreted as a process of unfolding of an intensive, preexistent complexity. |
---|