Cargando…
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
Residue co-evolution has become the primary principle for estimating inter-residue distances of a protein, which are crucially important for predicting protein structure. Most existing approaches adopt an indirect strategy, i.e., inferring residue co-evolution based on some hand-crafted features, sa...
Autores principales: | Ju, Fusong, Zhu, Jianwei, Shao, Bin, Kong, Lupeng, Liu, Tie-Yan, Zheng, Wei-Mou, Bu, Dongbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100175/ https://www.ncbi.nlm.nih.gov/pubmed/33953201 http://dx.doi.org/10.1038/s41467-021-22869-8 |
Ejemplares similares
-
ISSEC: inferring contacts among protein secondary structure elements using deep object detection
por: Zhang, Qi, et al.
Publicado: (2020) -
FALCON2: a web server for high-quality prediction of protein tertiary structures
por: Kong, Lupeng, et al.
Publicado: (2021) -
Predicting protein inter-residue contacts using composite likelihood maximization and deep learning
por: Zhang, Haicang, et al.
Publicado: (2019) -
Correction to: Predicting protein inter-residue contacts using composite likelihood maximization and deep learning
por: Zhang, Haicang, et al.
Publicado: (2019) -
Elastic-Net Copula Granger Causality for Inference of Biological Networks
por: Furqan, Mohammad Shaheryar, et al.
Publicado: (2016)