Cargando…
Report Quality of Generalized Linear Mixed Models in Psychology: A Systematic Review
Generalized linear mixed models (GLMMs) estimate fixed and random effects and are especially useful when the dependent variable is binary, ordinal, count or quantitative but not normally distributed. They are also useful when the dependent variable involves repeated measures, since GLMMs can model a...
Autores principales: | Bono, Roser, Alarcón, Rafael, Blanca, María J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100208/ https://www.ncbi.nlm.nih.gov/pubmed/33967923 http://dx.doi.org/10.3389/fpsyg.2021.666182 |
Ejemplares similares
-
Current Practices in Data Analysis Procedures in Psychology: What Has Changed?
por: Blanca, María J., et al.
Publicado: (2018) -
Repeated measures ANOVA and adjusted F-tests when sphericity is violated: which procedure is best?
por: Blanca, María J., et al.
Publicado: (2023) -
Non-normal Distributions Commonly Used in Health, Education, and Social Sciences: A Systematic Review
por: Bono, Roser, et al.
Publicado: (2017) -
Modeling Multiple Item Context Effects With Generalized Linear Mixed Models
por: Rose, Norman, et al.
Publicado: (2019) -
To transform or not to transform: using generalized linear mixed models to analyse reaction time data
por: Lo, Steson, et al.
Publicado: (2015)