Cargando…
Data-Driven Computational Social Network Science: Predictive and Inferential Models for Web-Enabled Scientific Discoveries
The ultimate goal of the social sciences is to find a general social theory encompassing all aspects of social and collective phenomena. The traditional approach to this is very stringent by trying to find causal explanations and models. However, this approach has been recently criticized for preven...
Autores principales: | Emmert-Streib, Frank, Dehmer, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100320/ https://www.ncbi.nlm.nih.gov/pubmed/33969290 http://dx.doi.org/10.3389/fdata.2021.591749 |
Ejemplares similares
-
Data Analytics Applications for Streaming Data From Social Media: What to Predict?
por: Emmert-Streib, Frank, et al.
Publicado: (2018) -
Editorial: AI-Enabled Data Science for COVID-19
por: Yan, Da, et al.
Publicado: (2021) -
Identifying and addressing data asymmetries so as to enable (better) science
por: Verhulst, Stefaan, et al.
Publicado: (2022) -
Benchmarking of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere
por: Huang, Yiyi, et al.
Publicado: (2021) -
Modeling information diffusion in social media: data-driven observations
por: Iamnitchi, Adriana, et al.
Publicado: (2023)