Cargando…
NEM-Tar: A Probabilistic Graphical Model for Cancer Regulatory Network Inference and Prioritization of Potential Therapeutic Targets From Multi-Omics Data
Targeted therapy has been widely adopted as an effective treatment strategy to battle against cancer. However, cancers are not single disease entities, but comprising multiple molecularly distinct subtypes, and the heterogeneity nature prevents precise selection of patients for optimized therapy. Di...
Autores principales: | Zhang, Yuchen, Zhu, Lina, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100334/ https://www.ncbi.nlm.nih.gov/pubmed/33968127 http://dx.doi.org/10.3389/fgene.2021.608042 |
Ejemplares similares
-
Inferring Interaction Networks From Multi-Omics Data
por: Hawe, Johann S., et al.
Publicado: (2019) -
Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data
por: Ogris, Christoph, et al.
Publicado: (2021) -
DRAGON: Determining Regulatory Associations using Graphical models on multi-Omic Networks
por: Shutta, Katherine H, et al.
Publicado: (2022) -
Probabilistic edge inference of gene networks with markov random field-based bayesian learning
por: Huang, Yu-Jyun, et al.
Publicado: (2022) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023)