Cargando…

Extracellular vesicles in prostate cancer: a narrative review

Over the past decade, there has been remarkable progress in prostate cancer biomarker discovery using urine- and blood-based assays. A liquid biopsy is a minimally invasive procedure to investigate the cancer-related molecules in circulating tumor cells (CTCs), cell-free DNA, and extracellular vesic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hatano, Koji, Fujita, Kazutoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100827/
https://www.ncbi.nlm.nih.gov/pubmed/33968677
http://dx.doi.org/10.21037/tau-20-1210
Descripción
Sumario:Over the past decade, there has been remarkable progress in prostate cancer biomarker discovery using urine- and blood-based assays. A liquid biopsy is a minimally invasive procedure to investigate the cancer-related molecules in circulating tumor cells (CTCs), cell-free DNA, and extracellular vesicles (EVs). Liquid biopsies have the advantage of detecting heterogeneity as well as acquired resistance in cancer. EVs are cell-derived vesicles enclosed by a lipid bilayer and contain various molecules, such as nucleic acids, proteins, and lipids. In patients with cancer, EVs derived from tumors can be isolated from urine, plasma, and serum. The advances in isolation techniques provide the opportunity to use EVs as biomarkers in the clinic. Emerging evidence suggests that EVs can be useful biomarkers for the diagnosis of prostate cancer, especially high-grade cancer. EVs can also be potent biomarkers for the prediction of disease progression in patients with castration-resistant prostate cancer (CRPC). EVs shed from cancer and stromal cells are involved in the development of tumor microenvironments, enhancing cancer progression, metastasis, and drug resistance. Here, we provide an overview of the use of EVs for the diagnosis of clinically significant prostate cancer as well as for predicting disease progression. We also discuss the biological function of EVs, which regulate cancer progression.