Cargando…
Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning
DNA-binding proteins (DBPs) play pivotal roles in many biological functions such as alternative splicing, RNA editing, and methylation. Many traditional machine learning (ML) methods and deep learning (DL) methods have been proposed to predict DBPs. However, these methods either rely on manual featu...
Autores principales: | Li, Guobin, Du, Xiuquan, Li, Xinlu, Zou, Le, Zhang, Guanhong, Wu, Zhize |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101451/ https://www.ncbi.nlm.nih.gov/pubmed/33986992 http://dx.doi.org/10.7717/peerj.11262 |
Ejemplares similares
-
An integration of deep learning with feature embedding for protein–protein interaction prediction
por: Yao, Yu, et al.
Publicado: (2019) -
DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation
por: Zhang, Haiping, et al.
Publicado: (2020) -
Deep learning for MYC binding site recognition
por: Fioresi, R., et al.
Publicado: (2022) -
Context dependent prediction in DNA sequence using neural networks
por: Grønbæk, Christian, et al.
Publicado: (2022) -
DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity
por: Zhang, Haiping, et al.
Publicado: (2019)