Cargando…
Semi-supervised oblique predictive clustering trees
Semi-supervised learning combines supervised and unsupervised learning approaches to learn predictive models from both labeled and unlabeled data. It is most appropriate for problems where labeled examples are difficult to obtain but unlabeled examples are readily available (e.g., drug repurposing)....
Autores principales: | Stepišnik, Tomaž, Kocev, Dragi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101547/ https://www.ncbi.nlm.nih.gov/pubmed/33987461 http://dx.doi.org/10.7717/peerj-cs.506 |
Ejemplares similares
-
Error curves for evaluating the quality of feature rankings
por: Slavkov, Ivica, et al.
Publicado: (2020) -
Semi-supervised associative classification using ant colony optimization algorithm
por: Awan, Hamid Hussain, et al.
Publicado: (2021) -
A crowd clustering prediction and captioning technique for public health emergencies
por: Zhou, Xiaoling, et al.
Publicado: (2023) -
Design of feature selection algorithm for high-dimensional network data based on supervised discriminant projection
por: Zhang, Zongfu, et al.
Publicado: (2023) -
Comparison of the performance of skip lists and splay trees in classification of internet packets
por: Khezrian, Navid, et al.
Publicado: (2019)