Cargando…
Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia
In current anesthesiology practice, anesthesiologists infer the state of unconsciousness without directly monitoring the brain. Drug- and patient-specific electroencephalographic (EEG) signatures of anesthesia-induced unconsciousness have been identified previously. We applied machine learning appro...
Autores principales: | Abel, John H., Badgeley, Marcus A., Meschede-Krasa, Benyamin, Schamberg, Gabriel, Garwood, Indie C., Lecamwasam, Kimaya, Chakravarty, Sourish, Zhou, David W., Keating, Matthew, Purdon, Patrick L., Brown, Emery N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101756/ https://www.ncbi.nlm.nih.gov/pubmed/33956800 http://dx.doi.org/10.1371/journal.pone.0246165 |
Ejemplares similares
-
Closed-loop control of anesthetic state in nonhuman primates
por: Chakravarty, Sourish, et al.
Publicado: (2023) -
A hidden Markov model reliably characterizes ketamine-induced spectral dynamics in macaque local field potentials and human electroencephalograms
por: Garwood, Indie C., et al.
Publicado: (2021) -
Etiology of Burst Suppression EEG Patterns
por: Shanker, Akshay, et al.
Publicado: (2021) -
Quantitative assessment of the relationship between behavioral and autonomic dynamics during propofol-induced unconsciousness
por: Subramanian, Sandya, et al.
Publicado: (2021) -
An early phase of instructive plasticity before the typical onset of sensory experience
por: Roy, Arani, et al.
Publicado: (2020)