Cargando…
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
In cognitive neuroscience, computational modeling can formally adjudicate between theories and affords quantitative fits to behavioral/brain data. Pragmatically, however, the space of plausible generative models considered is dramatically limited by the set of models with known likelihood functions....
Autores principales: | Fengler, Alexander, Govindarajan, Lakshmi N, Chen, Tony, Frank, Michael J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102064/ https://www.ncbi.nlm.nih.gov/pubmed/33821788 http://dx.doi.org/10.7554/eLife.65074 |
Ejemplares similares
-
Variational inference using approximate likelihood under the coalescent with recombination
por: Liu, Xinhao, et al.
Publicado: (2021) -
Approximate Likelihood
por: CRANMER, Kyle Stuart
Publicado: (2015) -
Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
por: Wu, Qianqian, et al.
Publicado: (2014) -
NetRAX: accurate and fast maximum likelihood phylogenetic network inference
por: Lutteropp, Sarah, et al.
Publicado: (2022) -
Synaptic and nonsynaptic plasticity approximating probabilistic inference
por: Tully, Philip J., et al.
Publicado: (2014)