Cargando…

Effect of transcranial direct current stimulation on the psychomotor, cognitive, and motor performances of power athletes

In sports science, transcranial direct current stimulation (tDCS) has many unknown effects on neuromuscular, psychomotor and cognitive aspects. Particularly, its impact on power performances remains poorly investigated. Eighteen healthy young males, all trained in a jumping sport (parkour) performed...

Descripción completa

Detalles Bibliográficos
Autores principales: Grosprêtre, Sidney, Grandperrin, Yohan, Nicolier, Magali, Gimenez, Philippe, Vidal, Chrystelle, Tio, Gregory, Haffen, Emmanuel, Bennabi, Djamila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102586/
https://www.ncbi.nlm.nih.gov/pubmed/33958679
http://dx.doi.org/10.1038/s41598-021-89159-7
Descripción
Sumario:In sports science, transcranial direct current stimulation (tDCS) has many unknown effects on neuromuscular, psychomotor and cognitive aspects. Particularly, its impact on power performances remains poorly investigated. Eighteen healthy young males, all trained in a jumping sport (parkour) performed three experimental sessions: anodal tDCS applied either on the left dorsolateral prefrontal cortex (dlPFC, cathode in supraorbital area) or on the primary motor cortex (M1, cathode on contralateral shoulder), and a placebo condition (SHAM), each applied for 20 min at 2 mA. Pre and post, maximal vertical and horizontal jumps were performed, associated to leg neuromuscular assessment through electromyography and peripheral nerve stimulations. Actual and imagined pointing tasks were also performed to evaluate fine motor skills, and a full battery of cognitive and psychomotor tests was administered. M1 tDCS improved jump performance accompanied by an increase in supraspinal and spinal excitabilities. dlPFC stimulation only impacted the pointing tasks. No effect on cognitive tests was found for any of the tDCS conditions. To conclude, the type of performance (maximal versus accurate) affected depended upon the tDCS montage. Finally, athletes responded well to tDCS for motor performance while results to cognitive tests seemed unaffected, at least when implemented with the present rationale.