Cargando…

Nonlinear dynamics of topological Dirac fermions in 2D spin-orbit coupled materials

The graphene family materials are two-dimensional staggered monolayers with a gapped energy band structure due to intrinsic spin-orbit coupling. The mass gaps in these materials can be manipulated on-demand via biasing with a static electric field, an off-resonance circularly polarized laser, or an...

Descripción completa

Detalles Bibliográficos
Autores principales: Malla, Rajesh K., Kort-Kamp, Wilton J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102602/
https://www.ncbi.nlm.nih.gov/pubmed/33958692
http://dx.doi.org/10.1038/s41598-021-89219-y
Descripción
Sumario:The graphene family materials are two-dimensional staggered monolayers with a gapped energy band structure due to intrinsic spin-orbit coupling. The mass gaps in these materials can be manipulated on-demand via biasing with a static electric field, an off-resonance circularly polarized laser, or an exchange interaction field, allowing the monolayer to be driven through a multitude of topological phase transitions. We investigate the dynamics of spin-orbit coupled graphene family materials to unveil topological phase transition fingerprints embedded in the nonlinear regime and show how these signatures manifest in the nonlinear Kerr effect and in third-harmonic generation processes. We show that the resonant nonlinear spectral response of topological fermions can be traced to specific Dirac cones in these materials, enabling characterization of topological invariants in any phase by detecting the cross-polarized component of the electromagnetic field. By shedding light on the unique processes involved in harmonic generation via topological phenomena our findings open an encouraging path towards the development of novel nonlinear systems based on two-dimensional semiconductors of the graphene family.