Cargando…
Machine Learning for Mortality Prediction in Pediatric Myocarditis
Background: Pediatric myocarditis is a rare disease. The etiologies are multiple. Mortality associated with the disease is 5–8%. Prognostic factors were identified with the use of national hospitalization databases. Applying these identified risk factors for mortality prediction has not been reporte...
Autores principales: | Chou, Fu-Sheng, Ghimire, Laxmi V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102689/ https://www.ncbi.nlm.nih.gov/pubmed/33968849 http://dx.doi.org/10.3389/fped.2021.644922 |
Ejemplares similares
-
Pediatric Severe Sepsis Prediction Using Machine Learning
por: Le, Sidney, et al.
Publicado: (2019) -
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis
por: Marcinkevics, Ricards, et al.
Publicado: (2021) -
Prediction of endotracheal tube size in pediatric patients: Development and validation of machine learning models
por: Zhou, Miao, et al.
Publicado: (2022) -
Comparison of Adverse Clinical Outcomes in Children Hospitalized for Myocarditis with and without COVID-19
por: Ghimire, Laxmi V., et al.
Publicado: (2023) -
The criticality Index-mortality: A dynamic machine learning prediction algorithm for mortality prediction in children cared for in an ICU
por: Patel, Anita K, et al.
Publicado: (2022)