Cargando…
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102841/ https://www.ncbi.nlm.nih.gov/pubmed/33962603 http://dx.doi.org/10.1186/s12911-021-01506-w |
_version_ | 1783689188037623808 |
---|---|
author | Mamandipoor, Behrooz Frutos-Vivar, Fernando Peñuelas, Oscar Rezar, Richard Raymondos, Konstantinos Muriel, Alfonso Du, Bin Thille, Arnaud W. Ríos, Fernando González, Marco del-Sorbo, Lorenzo del Carmen Marín, Maria Pinheiro, Bruno Valle Soares, Marco Antonio Nin, Nicolas Maggiore, Salvatore M. Bersten, Andrew Kelm, Malte Bruno, Raphael Romano Amin, Pravin Cakar, Nahit Suh, Gee Young Abroug, Fekri Jibaja, Manuel Matamis, Dimitros Zeggwagh, Amine Ali Sutherasan, Yuda Anzueto, Antonio Wernly, Bernhard Esteban, Andrés Jung, Christian Osmani, Venet |
author_facet | Mamandipoor, Behrooz Frutos-Vivar, Fernando Peñuelas, Oscar Rezar, Richard Raymondos, Konstantinos Muriel, Alfonso Du, Bin Thille, Arnaud W. Ríos, Fernando González, Marco del-Sorbo, Lorenzo del Carmen Marín, Maria Pinheiro, Bruno Valle Soares, Marco Antonio Nin, Nicolas Maggiore, Salvatore M. Bersten, Andrew Kelm, Malte Bruno, Raphael Romano Amin, Pravin Cakar, Nahit Suh, Gee Young Abroug, Fekri Jibaja, Manuel Matamis, Dimitros Zeggwagh, Amine Ali Sutherasan, Yuda Anzueto, Antonio Wernly, Bernhard Esteban, Andrés Jung, Christian Osmani, Venet |
author_sort | Mamandipoor, Behrooz |
collection | PubMed |
description | BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. METHODS: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. RESULTS: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. CONCLUSION: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016. |
format | Online Article Text |
id | pubmed-8102841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-81028412021-05-07 Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation Mamandipoor, Behrooz Frutos-Vivar, Fernando Peñuelas, Oscar Rezar, Richard Raymondos, Konstantinos Muriel, Alfonso Du, Bin Thille, Arnaud W. Ríos, Fernando González, Marco del-Sorbo, Lorenzo del Carmen Marín, Maria Pinheiro, Bruno Valle Soares, Marco Antonio Nin, Nicolas Maggiore, Salvatore M. Bersten, Andrew Kelm, Malte Bruno, Raphael Romano Amin, Pravin Cakar, Nahit Suh, Gee Young Abroug, Fekri Jibaja, Manuel Matamis, Dimitros Zeggwagh, Amine Ali Sutherasan, Yuda Anzueto, Antonio Wernly, Bernhard Esteban, Andrés Jung, Christian Osmani, Venet BMC Med Inform Decis Mak Research Article BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. METHODS: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. RESULTS: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. CONCLUSION: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016. BioMed Central 2021-05-07 /pmc/articles/PMC8102841/ /pubmed/33962603 http://dx.doi.org/10.1186/s12911-021-01506-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Mamandipoor, Behrooz Frutos-Vivar, Fernando Peñuelas, Oscar Rezar, Richard Raymondos, Konstantinos Muriel, Alfonso Du, Bin Thille, Arnaud W. Ríos, Fernando González, Marco del-Sorbo, Lorenzo del Carmen Marín, Maria Pinheiro, Bruno Valle Soares, Marco Antonio Nin, Nicolas Maggiore, Salvatore M. Bersten, Andrew Kelm, Malte Bruno, Raphael Romano Amin, Pravin Cakar, Nahit Suh, Gee Young Abroug, Fekri Jibaja, Manuel Matamis, Dimitros Zeggwagh, Amine Ali Sutherasan, Yuda Anzueto, Antonio Wernly, Bernhard Esteban, Andrés Jung, Christian Osmani, Venet Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title | Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title_full | Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title_fullStr | Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title_full_unstemmed | Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title_short | Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
title_sort | machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102841/ https://www.ncbi.nlm.nih.gov/pubmed/33962603 http://dx.doi.org/10.1186/s12911-021-01506-w |
work_keys_str_mv | AT mamandipoorbehrooz machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT frutosvivarfernando machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT penuelasoscar machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT rezarrichard machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT raymondoskonstantinos machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT murielalfonso machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT dubin machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT thillearnaudw machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT riosfernando machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT gonzalezmarco machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT delsorbolorenzo machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT delcarmenmarinmaria machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT pinheirobrunovalle machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT soaresmarcoantonio machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT ninnicolas machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT maggioresalvatorem machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT berstenandrew machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT kelmmalte machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT brunoraphaelromano machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT aminpravin machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT cakarnahit machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT suhgeeyoung machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT abrougfekri machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT jibajamanuel machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT matamisdimitros machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT zeggwaghamineali machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT sutherasanyuda machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT anzuetoantonio machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT wernlybernhard machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT estebanandres machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT jungchristian machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation AT osmanivenet machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation |