Cargando…

Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation

BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes....

Descripción completa

Detalles Bibliográficos
Autores principales: Mamandipoor, Behrooz, Frutos-Vivar, Fernando, Peñuelas, Oscar, Rezar, Richard, Raymondos, Konstantinos, Muriel, Alfonso, Du, Bin, Thille, Arnaud W., Ríos, Fernando, González, Marco, del-Sorbo, Lorenzo, del Carmen Marín, Maria, Pinheiro, Bruno Valle, Soares, Marco Antonio, Nin, Nicolas, Maggiore, Salvatore M., Bersten, Andrew, Kelm, Malte, Bruno, Raphael Romano, Amin, Pravin, Cakar, Nahit, Suh, Gee Young, Abroug, Fekri, Jibaja, Manuel, Matamis, Dimitros, Zeggwagh, Amine Ali, Sutherasan, Yuda, Anzueto, Antonio, Wernly, Bernhard, Esteban, Andrés, Jung, Christian, Osmani, Venet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102841/
https://www.ncbi.nlm.nih.gov/pubmed/33962603
http://dx.doi.org/10.1186/s12911-021-01506-w
_version_ 1783689188037623808
author Mamandipoor, Behrooz
Frutos-Vivar, Fernando
Peñuelas, Oscar
Rezar, Richard
Raymondos, Konstantinos
Muriel, Alfonso
Du, Bin
Thille, Arnaud W.
Ríos, Fernando
González, Marco
del-Sorbo, Lorenzo
del Carmen Marín, Maria
Pinheiro, Bruno Valle
Soares, Marco Antonio
Nin, Nicolas
Maggiore, Salvatore M.
Bersten, Andrew
Kelm, Malte
Bruno, Raphael Romano
Amin, Pravin
Cakar, Nahit
Suh, Gee Young
Abroug, Fekri
Jibaja, Manuel
Matamis, Dimitros
Zeggwagh, Amine Ali
Sutherasan, Yuda
Anzueto, Antonio
Wernly, Bernhard
Esteban, Andrés
Jung, Christian
Osmani, Venet
author_facet Mamandipoor, Behrooz
Frutos-Vivar, Fernando
Peñuelas, Oscar
Rezar, Richard
Raymondos, Konstantinos
Muriel, Alfonso
Du, Bin
Thille, Arnaud W.
Ríos, Fernando
González, Marco
del-Sorbo, Lorenzo
del Carmen Marín, Maria
Pinheiro, Bruno Valle
Soares, Marco Antonio
Nin, Nicolas
Maggiore, Salvatore M.
Bersten, Andrew
Kelm, Malte
Bruno, Raphael Romano
Amin, Pravin
Cakar, Nahit
Suh, Gee Young
Abroug, Fekri
Jibaja, Manuel
Matamis, Dimitros
Zeggwagh, Amine Ali
Sutherasan, Yuda
Anzueto, Antonio
Wernly, Bernhard
Esteban, Andrés
Jung, Christian
Osmani, Venet
author_sort Mamandipoor, Behrooz
collection PubMed
description BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. METHODS: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. RESULTS: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. CONCLUSION: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016.
format Online
Article
Text
id pubmed-8102841
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-81028412021-05-07 Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation Mamandipoor, Behrooz Frutos-Vivar, Fernando Peñuelas, Oscar Rezar, Richard Raymondos, Konstantinos Muriel, Alfonso Du, Bin Thille, Arnaud W. Ríos, Fernando González, Marco del-Sorbo, Lorenzo del Carmen Marín, Maria Pinheiro, Bruno Valle Soares, Marco Antonio Nin, Nicolas Maggiore, Salvatore M. Bersten, Andrew Kelm, Malte Bruno, Raphael Romano Amin, Pravin Cakar, Nahit Suh, Gee Young Abroug, Fekri Jibaja, Manuel Matamis, Dimitros Zeggwagh, Amine Ali Sutherasan, Yuda Anzueto, Antonio Wernly, Bernhard Esteban, Andrés Jung, Christian Osmani, Venet BMC Med Inform Decis Mak Research Article BACKGROUND: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. METHODS: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. RESULTS: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. CONCLUSION: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016. BioMed Central 2021-05-07 /pmc/articles/PMC8102841/ /pubmed/33962603 http://dx.doi.org/10.1186/s12911-021-01506-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Mamandipoor, Behrooz
Frutos-Vivar, Fernando
Peñuelas, Oscar
Rezar, Richard
Raymondos, Konstantinos
Muriel, Alfonso
Du, Bin
Thille, Arnaud W.
Ríos, Fernando
González, Marco
del-Sorbo, Lorenzo
del Carmen Marín, Maria
Pinheiro, Bruno Valle
Soares, Marco Antonio
Nin, Nicolas
Maggiore, Salvatore M.
Bersten, Andrew
Kelm, Malte
Bruno, Raphael Romano
Amin, Pravin
Cakar, Nahit
Suh, Gee Young
Abroug, Fekri
Jibaja, Manuel
Matamis, Dimitros
Zeggwagh, Amine Ali
Sutherasan, Yuda
Anzueto, Antonio
Wernly, Bernhard
Esteban, Andrés
Jung, Christian
Osmani, Venet
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title_full Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title_fullStr Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title_full_unstemmed Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title_short Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
title_sort machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102841/
https://www.ncbi.nlm.nih.gov/pubmed/33962603
http://dx.doi.org/10.1186/s12911-021-01506-w
work_keys_str_mv AT mamandipoorbehrooz machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT frutosvivarfernando machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT penuelasoscar machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT rezarrichard machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT raymondoskonstantinos machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT murielalfonso machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT dubin machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT thillearnaudw machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT riosfernando machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT gonzalezmarco machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT delsorbolorenzo machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT delcarmenmarinmaria machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT pinheirobrunovalle machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT soaresmarcoantonio machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT ninnicolas machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT maggioresalvatorem machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT berstenandrew machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT kelmmalte machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT brunoraphaelromano machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT aminpravin machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT cakarnahit machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT suhgeeyoung machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT abrougfekri machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT jibajamanuel machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT matamisdimitros machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT zeggwaghamineali machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT sutherasanyuda machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT anzuetoantonio machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT wernlybernhard machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT estebanandres machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT jungchristian machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation
AT osmanivenet machinelearningpredictsmortalitybasedonanalysisofventilationparametersofcriticallyillpatientsmulticentrevalidation