Cargando…

Novel approach for Monte Carlo simulation of the new COVID-19 spread dynamics

A Monte Carlo simulation in a novel approach is used for studying the problem of the outbreak and spread dynamics of the new COVID-19 pandemic in this work. In particular, our goal was to generate epidemiological data based on natural mechanism of transmission of this disease assuming random interac...

Descripción completa

Detalles Bibliográficos
Autores principales: Maltezos, Stavros, Georgakopoulou, Angelika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103742/
https://www.ncbi.nlm.nih.gov/pubmed/33971307
http://dx.doi.org/10.1016/j.meegid.2021.104896
Descripción
Sumario:A Monte Carlo simulation in a novel approach is used for studying the problem of the outbreak and spread dynamics of the new COVID-19 pandemic in this work. In particular, our goal was to generate epidemiological data based on natural mechanism of transmission of this disease assuming random interactions of a large-finite number of individuals in very short distance ranges. In the simulation we also take into account the stochastic character of the individuals in a finite population and given densities of people. On the other hand, we include in the simulation the appropriate statistical distributions for the parameters characterizing this disease. An important outcome of our work, besides the generated epidemic curves, is the methodology of determining the effective reproductive number during the main part of the daily new cases of the epidemic. Since this quantity constitutes a fundamental parameter of the SIR-based epidemic models, we also studied how it is affected by small variations of the incubation time and the crucial distance distributions, and furthermore, by the degree of quarantine measures. In addition, we compare our qualitative results with those of selected real epidemiological data