Cargando…

Computation of drag and diffusion coefficient for coronavirus: I

Monte Carlo simulations and integral equation techniques allow for the flexible and efficient computation of drag and diffusion coefficients for virus mimetic particles. We highlight a Monte Carlo method that is useful for computing the drag on biomimetic particles in the free-molecular regime and a...

Descripción completa

Detalles Bibliográficos
Autores principales: White, Nathan, Seelig, John-David, Loyalka, Sudarshan K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103743/
https://www.ncbi.nlm.nih.gov/pubmed/33976456
http://dx.doi.org/10.1016/j.jaerosci.2021.105806
Descripción
Sumario:Monte Carlo simulations and integral equation techniques allow for the flexible and efficient computation of drag and diffusion coefficients for virus mimetic particles. We highlight a Monte Carlo method that is useful for computing the drag on biomimetic particles in the free-molecular regime and a numerical technique to solve a boundary integral equation (related to the Stokes equation) in the hydrodynamic limit. The free-molecular and the continuum results allow the construction of an approximation for the drag applicable over the full range of Knudsen numbers. Finally, we outline how this work will be useful in modeling viral transport in air and fluids and in viral morphology measurements and in viral separations via electrospray-differential mobility analyzers (ES-DMA).