Cargando…
Learning where to look for COVID-19 growth: Multivariate analysis of COVID-19 cases over time using explainable convolution–LSTM
Determinant factors which contribute to the prediction should take into account multivariate analysis for capturing coarse-to-fine contextual information. From the preliminary descriptive analysis, it shows that environmental factor such as UV (ultraviolet) is one of the essential factors that shoul...
Autores principales: | Yudistira, Novanto, Sumitro, Sutiman Bambang, Nahas, Alberth, Riama, Nelly Florida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103767/ https://www.ncbi.nlm.nih.gov/pubmed/33994895 http://dx.doi.org/10.1016/j.asoc.2021.107469 |
Ejemplares similares
-
Predicting COVID-19 cases using bidirectional LSTM on multivariate time series
por: Said, Ahmed Ben, et al.
Publicado: (2021) -
Mask usage recognition using vision transformer with transfer learning and data augmentation
por: Jahja, Hensel D., et al.
Publicado: (2023) -
Dysfunctional energy and future perspective of low dose H(2)O(2) as protective agent in neurodegenerative disease
por: Widyarti, Sri, et al.
Publicado: (2023) -
Impact of lockdown during the COVID-19 outbreak on multi-scale air quality
por: Bray, Casey D., et al.
Publicado: (2021) -
Decreased expression of MUC2 due to a decrease in the expression of lectins and apoptotic defects in colitis patients
por: Wibowo, Agung A., et al.
Publicado: (2019)