Cargando…
MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis
With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of more than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital mortality and an increasing concern in the ageing western world. Recently, medical and technological advances have h...
Autores principales: | Rosnati, Margherita, Fortuin, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104377/ https://www.ncbi.nlm.nih.gov/pubmed/33961681 http://dx.doi.org/10.1371/journal.pone.0251248 |
Ejemplares similares
-
TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection
por: Huang, Junyao, et al.
Publicado: (2020) -
AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity
por: Xiao, Li-Ming, et al.
Publicado: (2021) -
Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN
por: Gong, Liyun, et al.
Publicado: (2021) -
Association of Genetic Polymorphisms in the Matrix Gla Protein (MGP) Gene with Coronary Artery Disease and Serum MGP Levels
por: Karsli-Ceppioglu, S, et al.
Publicado: (2019) -
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
por: Al-Ajlan, Amani, et al.
Publicado: (2018)