Cargando…
Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction
Molecular descriptors are essential to not only quantitative structure-activity relationship (QSAR) models but also machine learning–based material, chemical, and biological data analysis. Here, we propose persistent spectral–based machine learning (PerSpect ML) models for drug design. Different fro...
Autores principales: | Meng, Zhenyu, Xia, Kelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104863/ https://www.ncbi.nlm.nih.gov/pubmed/33962954 http://dx.doi.org/10.1126/sciadv.abc5329 |
Ejemplares similares
-
Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
por: Liu, Xiang, et al.
Publicado: (2022) -
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity
por: Ammar, Ammar, et al.
Publicado: (2023) -
Applied machine learning for predicting the lanthanide-ligand binding affinities
por: Chaube, Suryanaman, et al.
Publicado: (2020) -
An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
por: Parks, Conor, et al.
Publicado: (2020) -
Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning
por: Rube, H. Tomas, et al.
Publicado: (2022)