Cargando…
XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis
Elevated ambient temperature has wide effects on plant growth and development. ELF3, a proposed thermosensor, negatively regulates protein activity of the growth-promoting factor PIF4, and such an inhibitory effect is subjected to attenuation at warm temperature. However, how ELF3 stability is regul...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104893/ https://www.ncbi.nlm.nih.gov/pubmed/33962946 http://dx.doi.org/10.1126/sciadv.abf4427 |
Sumario: | Elevated ambient temperature has wide effects on plant growth and development. ELF3, a proposed thermosensor, negatively regulates protein activity of the growth-promoting factor PIF4, and such an inhibitory effect is subjected to attenuation at warm temperature. However, how ELF3 stability is regulated at warm temperature remains enigmatic. Here, we report the identification of XBAT31 as the E3 ligase that mediates ELF3 degradation in response to warm temperature in Arabidopsis. XBAT31 interacts with ELF3, ubiquitinates ELF3, and promotes ELF3 degradation via the 26S proteasome. Mutation of XBAT31 results in enhanced accumulation of ELF3 and reduced hypocotyl elongation at warm temperature. In contrast, overexpression of XBAT31 accelerates ELF3 degradation and promotes hypocotyl growth. Furthermore, XBAT31 interacts with the B-box protein BBX18, and the XBAT31-mediated ELF3 degradation is dependent on BBX18. Thus, our findings reveal that XBAT31-mediated destruction of ELF3 represents an additional regulatory layer of complexity in temperature signaling during plant thermomorphogenesis. |
---|