Cargando…

Antiprostate Cancer Activity of Ineupatolide Isolated from Carpesium cernuum L.

OBJECTIVE: The aim of the study was to investigate the antiprostate cancer effects and mechanism of ineupatolide (T-21), a natural product isolated from the Compositae plant Carpesium cernuum L., on PC-3 human prostate cancer cells. METHODS: The effect of T-21 on the proliferation of PC-3 cells was...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yuan-she, Mao, Jing-xin, Zhang, Lai, Guo, Hong-wei, Yan, Chen, Chen, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105106/
https://www.ncbi.nlm.nih.gov/pubmed/33996996
http://dx.doi.org/10.1155/2021/5515961
Descripción
Sumario:OBJECTIVE: The aim of the study was to investigate the antiprostate cancer effects and mechanism of ineupatolide (T-21), a natural product isolated from the Compositae plant Carpesium cernuum L., on PC-3 human prostate cancer cells. METHODS: The effect of T-21 on the proliferation of PC-3 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration, and invasion experiments; the morphology of cell apoptosis was observed by Hoechst-propidium iodide staining; the effects of T-21 on PC-3 cell apoptosis and the cell cycle were evaluated by flow cytometry; and the effect of T-21 on the expression levels of phosphorylated protein kinase B (p-AKT), AKT, X-linked inhibitor of apoptosis protein (xlAP), procaspase-3, and poly (ADP-ribose) polymerase (PARP) in PC-3 cells was measured by western blotting. RESULTS: T-21 significantly inhibited the proliferation of cells, and its half-maximal inhibitory concentrations at 12, 24, and 48 h were 38.46 ± 1.01, 24.63 ± 0.70, and 7.36 ± 0.58 μM, respectively. T-21 may promote cell apoptosis in a concentration-dependent manner and block the cell cycle in the G2 and S phases. In addition, T-21 significantly reduced the protein expression levels of p-AKT, AKT, xlAP, procaspase-3, and PARP. CONCLUSION: T-21 exhibits antiproliferation effects on PC-3 cells by promoting apoptosis and arresting the cell cycle in the G2 and S phases. The possible mechanism underlying its potential therapeutic effects against prostate cancer is related to the AKT/xlAP pathway.