Cargando…

Inhibition of SARS-CoV-2 reproduction using Boswellia carterii: A theoretical study

This study investigated the possibility of inhibition of the SARS-CoV-2 virus using the compounds alpha-Boswellic acid (ABA) and beta-Boswellic acid (BBA) which are active components in the well-known natural product Boswellia carterii (BC). The SARS-CoV-2 virus reproduces in the body by linking its...

Descripción completa

Detalles Bibliográficos
Autores principales: Kadhim, Mustafa M., Washeel Salman, Abbas, Mrebee Zarzoor, Ameerah, Kadhum, Wesam R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105125/
https://www.ncbi.nlm.nih.gov/pubmed/33994607
http://dx.doi.org/10.1016/j.molliq.2021.116440
Descripción
Sumario:This study investigated the possibility of inhibition of the SARS-CoV-2 virus using the compounds alpha-Boswellic acid (ABA) and beta-Boswellic acid (BBA) which are active components in the well-known natural product Boswellia carterii (BC). The SARS-CoV-2 virus reproduces in the body by linking its spike with the cell receptor. At the same time, a pH range (4.5–6) of the cell's lysosomes is considered as a perfect environment to release RNA in the cell cytoplasm. In view of these, docking studies were employed to study the interaction between the spikes of the virus and ABA or BBA using Molecular Graphic Laboratory (MGL) tools and AutoDock Vina application. The binding of the ABA and BBA with the spike of the virus could inhibit its reproduction or provide sufficient time for the immune system to recognize the virus and hence, produce suitable antibodies. In addition, the pKa of ABA, BBA and hydroxychloroquine (HCQ) were calculated using HF/6-311G (d,p) method and then they were compared with the experimental pKa of HCQ. The Lethal Concentrations (LC50) of ABA and BBA were also calculated. In addition, molecular electrostatic potential is reported which indicates the active sites of ABA and BBA.