Cargando…
Deep phenotyping unstructured data mining in an extensive pediatric database to unravel a common KCNA2 variant in neurodevelopmental syndromes
PURPOSE: Electronic health records are gaining popularity to detect and propose interdisciplinary treatments for patients with similar medical histories, diagnoses, and outcomes. These files are compiled by different nonexperts and expert clinicians. Data mining in these unstructured data is a trans...
Autores principales: | Hully, Marie, Lo Barco, Tommaso, Kaminska, Anna, Barcia, Giulia, Cances, Claude, Mignot, Cyril, Desguerre, Isabelle, Garcelon, Nicolas, Kabashi, Edor, Nabbout, Rima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105164/ https://www.ncbi.nlm.nih.gov/pubmed/33500571 http://dx.doi.org/10.1038/s41436-020-01039-z |
Ejemplares similares
-
Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: an illustration from Dravet syndrome
por: Barco, Tommaso Lo, et al.
Publicado: (2021) -
Unilateral predominance of abnormal movements: A characteristic feature of the pediatric anti-NMDA receptor encephalitis?
por: Benjumea-Cuartas, Vanessa, et al.
Publicado: (2017) -
Sleep in Kcna2 knockout mice
por: Douglas, Christopher L, et al.
Publicado: (2007) -
KCNA2-Related Epileptic Encephalopathy
por: Kearney, Jennifer A.
Publicado: (2015) -
Mining the talk: unlocking the business value in unstructured information
por: Spangler, Scott, et al.
Publicado: (2007)