Cargando…
Comparison of radiomic feature aggregation methods for patients with multiple tumors
Radiomic feature analysis has been shown to be effective at analyzing diagnostic images to model cancer outcomes. It has not yet been established how to best combine radiomic features in cancer patients with multifocal tumors. As the number of patients with multifocal metastatic cancer continues to...
Autores principales: | Chang, Enoch, Joel, Marina Z., Chang, Hannah Y., Du, Justin, Khanna, Omaditya, Omuro, Antonio, Chiang, Veronica, Aneja, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105371/ https://www.ncbi.nlm.nih.gov/pubmed/33963236 http://dx.doi.org/10.1038/s41598-021-89114-6 |
Ejemplares similares
-
Comparison of Radiomic Feature Aggregation Methods for Patients with Multiple Tumors
por: Chang, Enoch, et al.
Publicado: (2020) -
Using Adversarial Images to Assess the Robustness of Deep Learning Models Trained on Diagnostic Images in Oncology
por: Joel, Marina Z., et al.
Publicado: (2022) -
The importance of feature aggregation in radiomics: a head and neck cancer study
por: Fontaine, Pierre, et al.
Publicado: (2020) -
Comparing Detection Schemes for Adversarial Images against Deep Learning Models for Cancer Imaging
por: Joel, Marina Z., et al.
Publicado: (2023) -
SDPS-40 MEDULLOBLASTOMA MOLECULAR SUBTYPE PREDICTION USING PATHOMIC FEATURE ANALYSIS
por: Mahtabfar, Aria, et al.
Publicado: (2023)