Cargando…
Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies
BACKGROUND: Q.Clear is a Bayesian penalized likelihood (BPL) reconstruction algorithm that presents improvements in signal-to-noise ratio (SNR) in clinical positron emission tomography (PET) scans. Brain studies in research require a reconstruction that provides a good spatial resolution and accentu...
Autores principales: | Ribeiro, Daniela, Hallett, William, Tavares, Adriana A. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105485/ https://www.ncbi.nlm.nih.gov/pubmed/33961164 http://dx.doi.org/10.1186/s40658-021-00386-3 |
Ejemplares similares
-
Assessing the impact of different penalty factors of the Bayesian reconstruction algorithm Q.Clear on in vivo low count kinetic analysis of [(11)C]PHNO brain PET-MR studies
por: Ribeiro, Daniela, et al.
Publicado: (2022) -
Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma
por: Wyrzykowski, Michał, et al.
Publicado: (2020) -
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023) -
The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR
por: Tian, Defeng, et al.
Publicado: (2022) -
Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
por: Texte, Edgar, et al.
Publicado: (2020)