Cargando…
Evaluation of artificial intelligence systems for assisting neurologists with fast and accurate annotations of scalp electroencephalography data
BACKGROUND: Assistive automatic seizure detection can empower human annotators to shorten patient monitoring data review times. We present a proof-of-concept for a seizure detection system that is sensitive, automated, patient-specific, and tunable to maximise sensitivity while minimizing human anno...
Autores principales: | Roy, Subhrajit, Kiral, Isabell, Mirmomeni, Mahtab, Mummert, Todd, Braz, Alan, Tsay, Jason, Tang, Jianbin, Asif, Umar, Schaffter, Thomas, Ahsen, Mehmet Eren, Iwamori, Toshiya, Yanagisawa, Hiroki, Poonawala, Hasan, Madan, Piyush, Qin, Yong, Picone, Joseph, Obeid, Iyad, Marques, Bruno De Assis, Maetschke, Stefan, Khalaf, Rania, Rosen-Zvi, Michal, Stolovitzky, Gustavo, Harrer, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105505/ https://www.ncbi.nlm.nih.gov/pubmed/33745882 http://dx.doi.org/10.1016/j.ebiom.2021.103275 |
Ejemplares similares
-
Seizure detection using wearable sensors and machine learning: Setting a benchmark
por: Tang, Jianbin, et al.
Publicado: (2021) -
The Temple University Hospital EEG Data Corpus
por: Obeid, Iyad, et al.
Publicado: (2016) -
The transcriptomic response of cells to a drug combination is more than the sum of the responses to the monotherapies
por: Diaz, Jennifer EL, et al.
Publicado: (2020) -
Alienist and Neurologist
Publicado: (1881) -
Alumist and Neurologist
Publicado: (1881)