Cargando…
Nonlinear oscillation and acoustic scattering of bubbles
The scattered acoustic pressure and scattered cross section of bubbles is studied using the scattered theory of bubbles. The nonlinear oscillations of bubbles and the scattering acoustic fields of a spherical bubble cluster are numerically simulated based on the bubble dynamic and fluid dynamic. The...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105682/ https://www.ncbi.nlm.nih.gov/pubmed/33940397 http://dx.doi.org/10.1016/j.ultsonch.2021.105573 |
Sumario: | The scattered acoustic pressure and scattered cross section of bubbles is studied using the scattered theory of bubbles. The nonlinear oscillations of bubbles and the scattering acoustic fields of a spherical bubble cluster are numerically simulated based on the bubble dynamic and fluid dynamic. The influences of the interaction between bubbles on scattering acoustic field of bubbles are researched. The results of numerical simulation show that the oscillation phases of bubbles are delayed to a certain extent at different positions in the bubble cluster, but the radii of bubbles during oscillation do not differ too much at different positions. Furthermore, directivity of the acoustic scattering of bubbles is obvious. The scattered acoustic pressures of bubbles are different at the different positions inside and outside of the bubble cluster. The scattering acoustic fields of a spherical bubble cluster depend on the driving pressure amplitude, driving frequency, the equilibrium radii of bubbles, bubble number and the radius of the spherical bubble cluster. These theoretical predictions provide a further understanding of physics behind ultrasonic technique and should be useful for guiding ultrasonic application. |
---|