Cargando…
EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer
BACKGROUND: Today, there are a lot of markers on the prognosis and diagnosis of complex diseases such as primary breast cancer. However, our understanding of the drivers that influence cancer aggression is limited. METHODS: In this work, we study somatic mutation data consists of 450 metastatic brea...
Autores principales: | Mirsadeghi, Leila, Haji Hosseini, Reza, Banaei-Moghaddam, Ali Mohammad, Kavousi, Kaveh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105935/ https://www.ncbi.nlm.nih.gov/pubmed/33962648 http://dx.doi.org/10.1186/s12920-021-00974-3 |
Ejemplares similares
-
Machine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithms
por: Yarahmadi, Bita, et al.
Publicado: (2023) -
A new approach to prediction riboflavin absorbance using imprinted polymer and ensemble machine learning algorithms
por: Yarahmadi, Bita, et al.
Publicado: (2023) -
Unraveling the molecular heterogeneity in type 2 diabetes: a potential subtype discovery followed by metabolic modeling
por: Khoshnejat, Maryam, et al.
Publicado: (2020) -
A holistic view of muscle metabolic reprogramming through personalized metabolic modeling in newly diagnosed diabetic patients
por: Khoshnejat, Maryam, et al.
Publicado: (2023) -
Beyond Taxonomic Analysis of Microbiomes: A Functional Approach for Revisiting Microbiome Changes in Colorectal Cancer
por: Norouzi-Beirami, Mohammad Hossein, et al.
Publicado: (2020)