Cargando…
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification
BACKGROUND: One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated data include: using transfer learning, data augmenta...
Autores principales: | Otálora, Sebastian, Marini, Niccolò, Müller, Henning, Atzori, Manfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105943/ https://www.ncbi.nlm.nih.gov/pubmed/33964886 http://dx.doi.org/10.1186/s12880-021-00609-0 |
Ejemplares similares
-
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
por: Mun, Yechan, et al.
Publicado: (2021) -
Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models
por: Celniak, Weronika, et al.
Publicado: (2023) -
Weakly-supervised learning for lung carcinoma classification using deep learning
por: Kanavati, Fahdi, et al.
Publicado: (2020) -
Classification of Alzheimer’s Disease Based on Weakly Supervised Learning and Attention Mechanism
por: Wu, Xiaosheng, et al.
Publicado: (2022) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021)