Cargando…
An application of machine learning based on real-world data: Mining features of fibrinogen in clinical stages of lung cancer between sexes
BACKGROUND: Lung cancer is the most threatening malignant tumor to human health and life. Using a variety of machine learning algorithms and statistical analyses, this paper explores, discovers and demonstrates new indicators for the early diagnosis of lung cancer and their diagnostic performance fr...
Autores principales: | Yin, Fangtao, Zhu, Hongyu, Hong, Songlin, Sun, Chen, Wang, Jie, Sun, Mengting, Xu, Lin, Wang, Xiaoxiao, Yin, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106088/ https://www.ncbi.nlm.nih.gov/pubmed/33987321 http://dx.doi.org/10.21037/atm-20-4704 |
Ejemplares similares
-
Serum Fibrinogen Is An Independent Prognostic Factor In Operable Esophageal Squamous Carcinoma: A Real-World Study
por: Zheng, Yan, et al.
Publicado: (2019) -
Observational Safety Study of Clottafact(®) Fibrinogen Concentrate: Real-World Data in Mexico
por: Colin-Bracamontes, Ignacio, et al.
Publicado: (2020) -
Predicting the postoperative blood coagulation state of children with congenital heart disease by machine learning based on real-world data
por: Guo, Kai, et al.
Publicado: (2021) -
Real-world machine learning
por: Brink, Henrik, et al.
Publicado: (2017) -
Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules
por: Yin, Wenda, et al.
Publicado: (2022)