Cargando…
Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection
BACKGROUND: Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154(T) provided unprecedented information on the possible molecular mechanisms in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106148/ https://www.ncbi.nlm.nih.gov/pubmed/33962693 http://dx.doi.org/10.1186/s42523-021-00097-1 |
_version_ | 1783689725957111808 |
---|---|
author | Le Luyer, J. Schull, Q. Auffret, P. Lopez, P. Crusot, M. Belliard, C. Basset, C. Carradec, Q. Poulain, J. Planes, S. Saulnier, D. |
author_facet | Le Luyer, J. Schull, Q. Auffret, P. Lopez, P. Crusot, M. Belliard, C. Basset, C. Carradec, Q. Poulain, J. Planes, S. Saulnier, D. |
author_sort | Le Luyer, J. |
collection | PubMed |
description | BACKGROUND: Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154(T) provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. RESULTS: We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. CONCLUSION: Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42523-021-00097-1. |
format | Online Article Text |
id | pubmed-8106148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-81061482021-05-10 Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection Le Luyer, J. Schull, Q. Auffret, P. Lopez, P. Crusot, M. Belliard, C. Basset, C. Carradec, Q. Poulain, J. Planes, S. Saulnier, D. Anim Microbiome Research Article BACKGROUND: Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154(T) provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. RESULTS: We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. CONCLUSION: Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42523-021-00097-1. BioMed Central 2021-05-07 /pmc/articles/PMC8106148/ /pubmed/33962693 http://dx.doi.org/10.1186/s42523-021-00097-1 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Le Luyer, J. Schull, Q. Auffret, P. Lopez, P. Crusot, M. Belliard, C. Basset, C. Carradec, Q. Poulain, J. Planes, S. Saulnier, D. Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title | Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title_full | Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title_fullStr | Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title_full_unstemmed | Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title_short | Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
title_sort | dual rnaseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106148/ https://www.ncbi.nlm.nih.gov/pubmed/33962693 http://dx.doi.org/10.1186/s42523-021-00097-1 |
work_keys_str_mv | AT leluyerj dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT schullq dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT auffretp dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT lopezp dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT crusotm dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT belliardc dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT bassetc dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT carradecq dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT poulainj dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT planess dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection AT saulnierd dualrnaseqhighlightsthekineticsofskinmicrobiomeandfishhostresponsivenesstobacterialinfection |