Cargando…
Robust fitting of mixtures of GLMs by weighted likelihood
Finite mixtures of generalized linear models are commonly fitted by maximum likelihood and the EM algorithm. The estimation process and subsequent inferential and classification procedures can be badly affected by the occurrence of outliers. Actually, contamination in the sample at hand may lead to...
Autor principal: | Greco, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106383/ https://www.ncbi.nlm.nih.gov/pubmed/33995686 http://dx.doi.org/10.1007/s10182-021-00402-y |
Ejemplares similares
-
Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification
por: Theis, Lucas, et al.
Publicado: (2013) -
Approximate inference for spatial GLMs
por: Eidsvik, Jo, et al.
Publicado: (2006) -
Using GLMs to recover sparse connectivity in complex networks
por: Cook, Daniel, et al.
Publicado: (2010) -
Inducible Knockdown of Plasmodium Gene Expression Using the glmS Ribozyme
por: Prommana, Parichat, et al.
Publicado: (2013) -
Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile
por: Esser, Anna, et al.
Publicado: (2022)