Cargando…
Elucidating of oxidative distress in COVID-19 and methods of its prevention
The pandemic of SARS-CoV-2 stimulates significant efforts and approaches to understand its global spread. Although the recent introduction of the vaccine is a crucial prophylactic step, the effective treatment for SARS-CoV-2 is still undiscovered. An in-depth analysis of symptoms and clinical parame...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106523/ https://www.ncbi.nlm.nih.gov/pubmed/33974898 http://dx.doi.org/10.1016/j.cbi.2021.109501 |
Sumario: | The pandemic of SARS-CoV-2 stimulates significant efforts and approaches to understand its global spread. Although the recent introduction of the vaccine is a crucial prophylactic step, the effective treatment for SARS-CoV-2 is still undiscovered. An in-depth analysis of symptoms and clinical parameters, as well as molecular changes, is necessary to comprehend COVID-19 and propose a remedy for affected people to fight that disease. The analysis of available clinical data and SARS-CoV-2 infection markers underlined the main pathogenic process in COVID-19 is cytokine storm and inflammation. That led us to suggest that the most important pathogenic feature of SARS-CoV-2 leading to COVID-19 is oxidative stress and cellular damage stimulated by iron, a source of Fenton reaction and its product hydroxyl radical (•OH), the most reactive ROS with t(1/2)–10(−9)s. Therefore we suggest some scavenging agents are a reasonable choice for overcoming its toxic effect and can be regarded as a treatment for the disease on the molecular level. |
---|