Cargando…

Radiobiological Comparison of Teardrop Technique for Breast Cancer Radiotherapy Treatment Planning on a Tomotherapy System

Breast cancer is one of the most common cancer worldwide with large morbidity. In Mexico, it is the first cause of death by cancer in women. Radiotherapy has proven to be a great tool to control such ailments and TomoTherapy is a relatively new technology to accomplish it. To obtain good clinical ou...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrera, Higmar, Reyes, Uvaldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106967/
https://www.ncbi.nlm.nih.gov/pubmed/33981510
http://dx.doi.org/10.7759/cureus.14390
Descripción
Sumario:Breast cancer is one of the most common cancer worldwide with large morbidity. In Mexico, it is the first cause of death by cancer in women. Radiotherapy has proven to be a great tool to control such ailments and TomoTherapy is a relatively new technology to accomplish it. To obtain good clinical outcomes, tight dosimetric constraints are placed on organs at risk (OARs) to maximize tumor control and minimize normal tissue complication probabilities. The teardrop technique helps meeting these constraints by placing a virtual block over parts of the ipsilateral lung and the heart but it contributes to lengthen the treatment time. In this work, we present our experience in using this technique and compare its radiobiological estimations with similar plans without it. Ten patients diagnosed with breast cancer were planned twice, with and without the teardrop technique. Dose-volume histograms were obtained and analyzed to get uncomplicated tumor control probability (UTCP) and optimization estimator (fEUD) parameters. Classical dosimetrical parameters for planning target volumes (PTVs): conformity index, homogeneity index, and coverage were also recorded and statistically described. Several dosimetrical parameters for OARs were recorded and analyzed. The UTCP parameter had a mean value of 0.968 ± 0.023 when no block was used and 0.966 ± 0.022 with the teardrop. The fEUD parameter values were: 0.515 ± 0.049 without blocks and 0.541 ± 0.057 with the teardrop. Optimization of every plan was stopped only after all constraints were met, and it was easier to accomplish this goal with the teardrop technique. The teardrop technique permitted a 5% gain in fEUD. The teardrop technique was observed to have a net radiobiological benefit with little impact on patient scheduling.