Cargando…

A note on the stability characteristics of the respiratory events

The present outbreak enables the researchers from fluid mechanics to widen the understanding of expelling respiratory liquids from a unique perspective to diminish the persistence of COVID-19. This article focuses on uncovering the instability mechanism responsible for forming droplets and aerosols...

Descripción completa

Detalles Bibliográficos
Autor principal: Vadivukkarasan, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Masson SAS. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107050/
https://www.ncbi.nlm.nih.gov/pubmed/33994752
http://dx.doi.org/10.1016/j.euromechflu.2021.05.001
Descripción
Sumario:The present outbreak enables the researchers from fluid mechanics to widen the understanding of expelling respiratory liquids from a unique perspective to diminish the persistence of COVID-19. This article focuses on uncovering the instability mechanism responsible for forming droplets and aerosols during respiratory events such as breathing, talking, coughing and sneezing. We illustrate a mathematical framework by revisiting the model (Vadivukkarasan and Panchagnula, 2017) and show the associated instabilities during respiratory events. We envisage the combined Rayleigh–Taylor–Kelvin–Helmholtz (R–T–K–H) model as a robust tool for respiratory events. This study highlights the distinct possibility of respiratory droplet formation over multiple instabilities and provides a fundamental understanding. We present the different dominant modes through a ternary phase diagram for three-dimensional numbers (Bond number and Weber numbers). Furthermore, this model can be extended phenomenologically to viscous fluids to satisfy mucus and saliva in the respiratory liquids.